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1. Introduction

It is well-known, that the special theory of relativity can be derived without the speed

of light axiom, see for example [1], [2], [3], [4] and follow the citations in these papers,

some of them dating back to Kaluza 1924 and Ignatowski 1910. However, the standard

texts on the special and general relativity like [5], [6], [7], [8], [9] don’t mention this at

all. Only [10], [3] and [11] discuss this issue, but except for the last one, the treatment

is still too much complex.

It was reported that the possibility of deriving the special relativity without the

speed of light axiom was discovered many times in the past [2], without realizing that

this was already clear to Albert Einstein at the time of the writing [12].

The best argument on this issue is given in [11]: either particles can be accelerated

to arbitrary speeds, or they cannot. If they can, we get the Galileo transformation,

if they cannot, then there must exist, mathematically speaking, a least upper bound

c to particle speeds in any one inertial frame. By the relativity principle, this bound

must be the same in all inertial frames, moreover, the speed c – whether attained or

not by any physical effect – must transform into itself (otherwise we could get higher

speed than c of some particle when transformed from S to S ′). But when c transforms

into itself, we are lead uniquely to the Lorentz transformation by the usual procedure

employed in most of the texts. Thus the relativity principle by itself necessarily implies

that all inertial frames are related either by Galilean transformations, or by Lorentz

transformations with some universal c. The only role of the speed of light axiom is the

determination of c.

However it is not really intuitive that particles cannot be accelerated to arbitrary

speeds. On the other hand, the fact that we will allow any possible transformation

between S and S’ (and derive the only two allowed possibilities) is much more plausible.

It is of course equivalent, but the latter approach is more explicit.

The basic principles which the Newtonian theory (and also the special theory

of relativity) is built on are homogeneity, isotropy and the principle of relativity.

This allows two and only two possible transformations: Galilean and Lorentzian.

Experimentally the Galilean is not satisfactory for many reasons (the apparent speed

of light limit and other problems), so we need to take the Lorentz one. There is no

other option left, unless we want to sacrifice the principle of relativity or homogeneity

or isotropy.

Almost every aspect of this issue can already be found in the literature. However,

what the author couldn’t find, is a derivation of the special relativity in a rigorous,

but simple, short and clear way. The amount of rigor is subjective, also some of the

assumptions can be weakened, or made more precise, but what we want to achieve in

this article is to choose some small amount of assumptions, put them into equations and

from that point only work with the algebra. See the references, for example [13], [14]

for a thorough description of what postulates are necessary and which can be weakened

and also for a review of all the derivations of the Lorentz transformations known to the
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author of [13], [14] until 1997 (together with his own new derivation — but we present

a shorter one in this paper).

Many articles (see the citations in [1]) first derive the velocity addition law and

the arguments are quite messy, referring to pictures many times [4], or nitpicking in

unnecessary mathematics [3], [15], [16], [17] etc. The articles [18], [19] are very good and

cover almost everything which is shown in this article, however they also concentrate on

quite unimportant mathematical details and some of their derivations are unnecessarily

complicated and long. The best approach known to the authors is [1] that derives the

Lorentz transformation and the velocity addition law using a very clear arguments, first

writing down algebraic relations that are equivalent to homogeneity, isotropy and the

relativity principle and the rest is a pure algebra. He works in 2D spacetime though

and only derives the Lorentz boost.

In this paper we try to use the same, nice and simple arguments of [1], but using the

results from [18], [19] and [3], thus deriving everything in 4D spacetime and not only

showing how to get the Lorentz boost, but also that all permissible transformations

obey the orthogonal property, thus proving the invariance of the spacetime interval.

And it is well-known, that the whole special theory of relativity can be derived from the

invariance of the interval.

2. Derivation of the transformation

This short section is the main result of the article. The other sections are just more

detailed explanations and discussions.

Let’s have two Cartesian systems S and S ′, where S ′ is moving with the velocity

v along the x-axis and at the time t = 0, S = S ′ (in other words the y and z axes of

both systems are parallel and the x axes are the same, except that the origins x = 0

and x′ = 0 are moving with the speed v with respect to each other: when x = vt, then

x′ = 0).

We need to assume the homogeneity, isotropy and the principle of relativity.

In sections 3.1, 3.2, 3.3 we show in detail, that these very general and ”obvious”

assumptions can be written mathematically using the following equations (1a)-(1h) (if

some of them look unintuitive or confusing, look into the sections 3.1, 3.2, 3.3 for the

thorough derivation and explanation):













t′

x′

y′

z′













= A(v)













t

x

y

z












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where A(v) is a matrix

A(v) =













a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33













(1a)

and the coefficients aµν only depend on v (homogeneity). We require

A(0) = 1 (1b)

and also (relation between origins and parallel axes)

x′ = 0 when x = vt, y = 0, z = 0 (1c)

x′ = 0 y′ = 0 when x = 0, y = 0, z arbitrary (1d)

For each v (relativity):

A(−v)A(v) = 1 (1e)

For each u and v there exist w such that (relativity):

A(u)A(v) = A(w) (1f)

For each v there exist v̄ such that (isotropy)

TA(v)T = A(v̄) (1g)

where the matrix T is

T =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1













For each v and each α (isotropy):

R(−α)A(v)R(α) = A(v) (1h)

where the matrix R(α) is:

R(α) =













1 0 0 0

0 1 0 0

0 0 cos α sin α

0 0 − sin α cos α













In Appendix A it is shown, that by a pure algebraic manipulation, the above

assumptions directly imply that

A(v) =















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1














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where K is an arbitrary constant independent on v. This is the Lorentz (K > 0) and

Galilean (K = 0) transformation.

Let us first review the equations above to see that they really are what we mean

by the homogeneity, isotropy and the principle of relativity. And then we’ll discuss the

above result more thoroughly.

3. Assumptions

3.1. Homogeneity

The most general transformation from S to S ′ is:

t′ = T (t, x, y, z, v)

x′ = X(t, x, y, z, v)

y′ = Y (t, x, y, z, v)

z′ = Z(t, x, y, z, v)

The length of a rod put on the x-axis in the frame S is

l = x2 − x1

and in the frame S ′ the length will generally be different:

l′ = x′
2 − x′

1 = X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v)

Homogeneity means, that if we move the left end of the rod in the frame S from x1 to

x1 +h, the right end will move to x2 +h giving the same length l = (x2 +h)− (x1 +h) =

x2−x1 and that in the frame S ′ the new length l′ = X(t, x2+h, 0, 0, v)−X(t, x1+h, 0, 0, v)

will also be the same as before:

X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v) = X(t, x2 + h, 0, 0, v) − X(t, x1 + h, 0, 0, v)

so

X(t, x2 + h, 0, 0, v) − X(t, x2, 0, 0, v) = X(t, x1 + h, 0, 0, v) − X(t, x1, 0, 0, v)

and dividing by h and taking a limit h → 0:

∂X

∂x

∣

∣

∣

∣

∣

t,x2,0,0

=
∂X

∂x

∣

∣

∣

∣

∣

t,x1,0,0

but x1 and x2 are arbitrary, so ∂X
∂x

is constant so X(t, x, y, z, v) is linear with respect to

x. Similar procedure shows, that X(t, x, y, z, v) is linear with respect to y, z and t, and

the same for Y , Z and T , which means, that












t′

x′

y′

z′













= A(v)













t

x

y

z












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where

A(v) =













a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33













and the coefficients aµν only depend on v. This is the assumption (1a).

3.2. Principle of relativity

The relativity principle means, that the functional form of the transformation A(v) is

the same when transforming from S ′ to S. The S ′ has the speed v as seen from S,

however, the reciprocal speed of S as seen from S ′ can be generally anything, so we

denote it by ϕ(v):












t

x

y

z













= A(ϕ(v))













t′

x′

y′

z′













from which we get:












t

x

y

z













= A(ϕ(v))A(v)













t

x

y

z













or

A(ϕ(v))A(v) = 1

In our derivation, we assume ϕ(v) = −v (and we get the assumption (1e)), because it

is natural. However, as is shown in [19], it is not necessary, but it adds a complexity

to the derivation and our motive is not to find the weakest assumptions possible, but a

reasonable set of natural assumptions, such that the Lorentz transformation inevitably

follows from them.

Now let S ′′ be moving with a speed u with respect to S ′. Then the relativity

principle requires, that transforming from S to S ′ and then to S ′′ is the same as

transforming from S to S ′′ directly (with some other speed w):

A(u)A(v) = A(w)

This is the assumption (1f).

3.3. Isotropy

Isotropy of space implies (among other things), that the transformation doesn’t change

when we reverse the x-axis, i.e. that reversing the x-axis, applying the transformation
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for the speed v and reversing the x′-axis again is the same as applying the transformation

directly (but for some other speed v̄). The matrix that reverses the x axis is:

T =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1













So the above statement means:

TA(v)T = A(v̄)

This is the assumption (1g).

The isotropy also implies, that since the only significant spacial direction is that of

the (x, x′)-axis – the direction of motion – the transformation A(v) must be the same

as if we first rotate about the (x, x′)-axis, transform and then rotate back:

R(−α)A(v)R(α) = A(v)

where the R(α) is a matrix, that rotates the system around the x axis:

R(α) =













1 0 0 0

0 1 0 0

0 0 cos α sin α

0 0 − sin α cos α













And this is the assumption (1h).

4. Discussion

In Appendix A it is shown, that the above equations imply

A(v) =















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1















where K is a constant independent on v.

It can be shown [1] that K < 0 is inconsistent, so we set K = 1
c2

, where c is a

constant, independent of the frame of reference (because K is), with a dimension of

speed (possibly c = ∞) and we get our final formula:













t′

x′

y′

z′













=





















1
√

1− v
2

c
2

−
v

c
2

√

1− v
2

c
2

0 0

− v
√

1− v
2

c
2

1
√

1− v
2

c
2

0 0

0 0 1 0

0 0 0 1

































t

x

y

z












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For c = ∞ we get the Galilean transformation:













t′

x′

y′

z′













=













1 0 0 0

−v 1 0 0

0 0 1 0

0 0 0 1

























t

x

y

z













For c finite we get the Lorentz transformation, but the value of c is not determined by

the theory and must be measured in experiment.

For many centuries up to around 1905, it was known from an experiment, that

the c is very high or possibly infinite and it couldn’t be determined at that time, so

setting c = ∞ was the correct answer (they didn’t think this way, but they could if

they wanted and even Galileo could have derived the special theory of relativity [20]).

However now it’s clear, that the theory gives the correct results, when we set c to be

the speed of light (notice however, that in general, the c doesn’t have to be the speed of

light). So the speed of light axiom can actually be rephrased as: ”Don’t use the Galilean

transformation, because it doesn’t work, and if you get some maximum allowed speed

in the theory, it is the speed of light”.

5. Invariance of the spacetime interval

It is easy to show, that the Lorentz transformation above (K > 0) obeys the

orthogonality relation:

η = ΛT ηΛ

where Λ is the Lorentz transformation matrix and η = diag(−1, 1, 1, 1) is the Minkowski

tensor. Written using indices:

ηαβ = ηµνΛ
µ

αΛν
β (2)

and it can also be shown, that any transformation defined by the orthogonality relation

is either a boost (the transformation derived above), or spatial rotations, reflections of

axes or translations (see any book on the quantum field theory, for example [21]). All

of them are valid transformations between S and S ′. So the orthogonality relation can

be taken as the definition of all possible transformations between frames.

Now we define the space time interval ds2 by

ds2 = ηµνdxµdxν

This is invariant for all transformations defined by the orthogonality relation (2):

ds′2 = ηµνdx′µdx′ν = ηµνΛ
µ

αdxαΛν
βdxβ = ηαβdxαdxβ = ds2

On the other hand, all the transformations that leave the interval invariant must be of

the form (2), because

ds′2 = ηµνdx′µdx′ν = ηµν

dx′µ

dxα
dxα dx′ν

dxβ
dxβ = ds2 = ηαβdxαdxβ
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This is true for all dxα and dxβ, so we get:

ηµν

dx′µ

dxα

dx′ν

dxβ
= ηαβ (3)

It can also be shown [9] that this equation implies:

d2x′µ

dxρdxα
= 0

But then
dx′µ

dxα
= Λµ

α

are constants (depending only on v) and (3) are the orthogonality relations (2). In other

words, the orthogonality relations are equivalent to the invariance of the interval.

So the starting point to the special theory of relativity can be any of these (all of

them are equivalent, as shown in this paragraph):

• homogeneity, isotropy, the principle of relativity and the requirement, that we don’t

want the Galileo transformation

• the orthogonality relation

• invariance of the spacetime interval

6. Conclusion

We showed from the homogeneity, isotropy and the principle of relativity that the

only possible transformations between S and S ′ are either the Galileo or Lorentz

transformation, but nothing else. Contrary to other texts, we first wrote explicit

equations and then only used a pure algebra to derive our result.
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Appendix A. Derivation of the Lorentz transformation

From (1h) we get by multiplying by R(α) from left:

R(α)A(v) = A(v)R(α)

This must hold for any α and in Appendix B it is shown, that

A(v) =

(

A1 0

0 kP (θ)

)
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where

kP (θ) =

(

k cos θ k sin θ

−k sin θ k cos θ

)

for some values of the parameters k(v) and θ(v), that are functions of v. However, from

(1d) we get (for all v and z):
(

0

z′

)

=

(

k cos θ k sin θ

−k sin θ k cos θ

)(

0

z

)

From which zk sin θ = 0 for all z, so k sin θ = 0 and that implies

kP (θ) =

(

k(v) 0

0 k(v)

)

This k(v) can be positive, negative or zero. So now A(v) has this form:












t′

x′

y′

z′













=













D(v) C(v) 0 0

B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)

























t

x

y

z













where the constants A, B, C, D, E only depend on v, the direct velocity, and from (1c)

we get 0 = A(v)vt + B(v)t so

v = −B(v)

A(v)
(A.1)

In other words, we can always determine the direct speed v from the matrix elements.

From (1g) we get

TA(v)T =













D(v) −C(v) 0 0

−B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)













A(v̄) =













D(v̄) C(v̄) 0 0

B(v̄) A(v̄) 0 0

0 0 E(v̄) 0

0 0 0 E(v̄)













Comparing the two matrices we see that B(v̄) = −B(v) and A(v̄) = A(v). However,

from (A.1) we have v̄ = −B(v̄)
A(v̄)

and v = −B(v)
A(v)

, but then v̄ = −B(v̄)
A(v̄)

= B(v)
A(v)

= −v and we

get these relations by comparing the matrix elements of the two matrices:

A(−v) = A(v) (A.2)

B(−v) = −B(v) (A.3)

C(−v) = −C(v) (A.4)

D(−v) = D(v) (A.5)

E(−v) = E(v) (A.6)
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Using (1e) and the symmetries (A.2) – (A.6) we get:

A(−v)A(v) =













D(v) −C(v) 0 0

−B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)

























D(v) C(v) 0 0

B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)













= 1

multiplying:












D2 − BC C(D − A) 0 0

B(A − D) A2 − BC 0 0

0 0 E2 0

0 0 0 E2













= 1

or

A2 − BC = 1 (A.7)

B(A − D) = 0 (A.8)

D2 − BC = 1 (A.9)

C(A − D) = 0 (A.10)

E2 = 1 (A.11)

From (A.11) we get E(v) = ±1, but from (1b) we have E(0) = 1 so E(v) = 1 (of course

we require that matrix elements are continuous).

If for some v the A(v) 6= D(v), then B(v) = 0 from (A.8), thus A(v) = ±1 from

(A.7) and from (A.1) we get v = − 0
±1

= 0, which means that A(0) 6= D(0), but that is

a contradiction with (1b), that asserts A(0) = D(0) = 1.

So we must have A(v) = D(v) for all v, then from (A.7) we get C(v) = A2(v)−1
B(v)

and

from (A.1) follows B(v) = −vA(v):












t′

x′

y′

z′













=













A −A2−1
vA

0 0

−vA A 0 0

0 0 1 0

0 0 0 1

























t

x

y

z













where A(v) is an unknown function of v, except that A(0) = 1 (follows from (1b)). Now

we use (1f):

A(u)A(v) =















Au −A2
u
−1

uAu

0 0

−uAu Au 0 0

0 0 1 0

0 0 0 1





























Av −A2
v
−1

vAv

0 0

−vAv Av 0 0

0 0 1 0

0 0 0 1















= A(w)

Multiplying the matrices:

A(u)A(v) =













AuAv + (A2
u − 1) vAv

uAu

. . . 0 0

. . . AuAv + (A2
u − 1)uAu

vAv

0 0

0 0 1 0

0 0 0 1












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and

A(w) =















Aw −A2
w
−1

wAw

0 0

−wAw Aw 0 0

0 0 1 0

0 0 0 1















so comparing the two expressions for Aw (the first and the second diagonal element) we

get:
A2

v − 1

v2A2
v

=
A2

u − 1

u2A2
u

where the left hand side only depends on v, the right hand side only on u, thus both

sides are equal to a constant K, that is independent of the frame of reference, because

it doesn’t depend on the coordinates or v, so we get (remember A(0)=1, so we take the

positive square root)

Av =
1√

1 − Kv2

and we arrive at the expression for the transformation between S and S ′:













t′

x′

y′

z′













=















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1



























t

x

y

z













Appendix B. Rotations

For each α, we have:

R(α)A(v) = A(v)R(α)

where

R(α) =













1 0 0 0

0 1 0 0

0 0 cos α sin α

0 0 − sin α cos α













=

(

1 0

0 P (α)

)

P (α) =

(

cos α sin α

− sin α cos α

)

= 1 cosα + iσ2 sin α = eiασ2

A(v) =

(

A1 A2

A3 A4

)

and the σ1, σ2 and σ3 are the Pauli matrices. Then

R(α)A(v) − A(v)R(α) =

(

1 0

0 P (α)

)(

A1 A2

A3 A4

)

−
(

A1 A2

A3 A4

)(

1 0

0 P (α)

)

=

=

(

0 A2(1− P (α))

(P (α) − 1)A3 P (α)A4 − A4P (α)

)

= 0
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The parameter α is arbitrary, so A2 = A3 = 0 and (we set A4 = a01+a1σ1+a2σ2+a3σ3)

P (α)A4 − A4P (α) = eiασ2(a0 + a1σ1 + a2σ2 + a3σ3) − (a0 + a1σ1 + a2σ2 + a3σ3)e
iασ2 =

= eiασ2(a1σ1 +a3σ3)− (a1σ1 +a3σ3)e
iασ2 = i sin α (σ2(a1σ1 + a3σ3) − (a1σ1 + a3σ3)σ2) =

= 2 sin α(a1σ3 − a3σ1) = 0

Multiplying by σ3 from the left and taking a trace we get

Tr 2σ3 sin α(a1σ3 − a3σ1) = 2 sin α(a1 Tr1− ia3 Tr σ2) = 0

but Tr σ2 = 0 and Tr1 = 2 so a1 = 0. Similarly a3 = 0. So

A4 = a0 + a2σ2 = keiθσ2 = kP (θ)

where k =
√

a2
0 + a2

2, cos θ = a0

k
and sin θ = a2

k
. So the matrix A(v) can always be

written as:

A(v) =

(

A1 0

0 kP (θ)

)

for some values of the parameters k(v) and θ(v), that are functions of v. Note, that if

we rotate the axes before doing the transformation:

A(v)R(α) =

(

A1 0

0 kP (θ)

)(

1 0

0 P (α)

)

=

(

A1 0

0 kP (θ)P (α)

)

We see that by rotating around the x-axis by the angle α = −θ, we get

A(v)R(−θ) =

(

A1 0

0 k1

)

Geometrically this means, that the A(v)R(−θ) doesn’t rotate the y and z axes (only

scales them by a factor of k).
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